If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+80x=-50
We move all terms to the left:
25x^2+80x-(-50)=0
We add all the numbers together, and all the variables
25x^2+80x+50=0
a = 25; b = 80; c = +50;
Δ = b2-4ac
Δ = 802-4·25·50
Δ = 1400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1400}=\sqrt{100*14}=\sqrt{100}*\sqrt{14}=10\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-10\sqrt{14}}{2*25}=\frac{-80-10\sqrt{14}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+10\sqrt{14}}{2*25}=\frac{-80+10\sqrt{14}}{50} $
| 4(x+7)^2-300=400 | | 5(x-70)=2(x-10) | | 5/6(x-3)+1/3(3x+4)=-3/4(2x-5)+2/3x-5/4 | | -3x(3)+2(4)=5 | | -3(2x)-3)=33 | | 5x-20=9x-20 | | (7r-7)=-6+6r | | 0,5x+6=0,5x+10 | | 12=a+11/2 | | Y+6y+8=71 | | 80x=-25x^2-50 | | -6(x-9)+3x=24 | | 3.3^x=28 | | 7x2=180-x | | 1-3w=-14 | | 10(x+7)=-2(-4x+8) | | 12=a+3/2 | | m/3=7/5 | | 6k–12=–24 | | 5+k/8=-2 | | -20=-4x-6x | | -8(-3m-3)=-96 | | 7y+9=3y+5 | | x^2-7x=800 | | 6+6+x+2+x+2=2x+2x+1+1+3+3 | | 24p+12–18p=10+2p–6 | | -6+x/16=-5 | | 2(4x+6)=-3(x-26) | | 9+6x+1=13x-20-2x | | 9(1+x)=9x+9 | | -2+a/4=-4 | | X+4/3=2x/12+x-4/4 |